文献解读 | 利用仿生性肺微生理系统监测肺部病理及炎症反应

 

肺,作为呼吸和免疫防御的关键战场,在体外建立模拟感染和炎症反应的仿生肺模型一直是生物医学研究人员面临的一项重要但具有挑战性的任务。

长久以来,二维细胞培养模型为我们提供了肺上皮研究的初步平台,然而,这些模型却难以捕捉到肺部复杂多变的三维结构和免疫互动的丰富性。动物模型虽然有三维结构,但与人类肺组织的结构差异增加了制备过程的难度。直接培养人体组织则有免疫细胞丢失、体外维持时间不足等问题。

东南大学团队2023年1月在《Biosensors and Bioelectronics》(影响因子:12.6)期刊上发表了题为“A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions”的文章(第一作者:东南大学青年至善学者、艾玮得生物CTO陈早早副教授,通讯作者:巢杰教授,浦跃朴教授和顾忠泽教授),介绍了体外肺微生理系统模型的构建方法与应用。该模型不仅在芯片上建立了肺泡-支气管复杂器官模型,而且在模型中引入了多种免疫细胞,增强了模型的仿真性,可以在模型上模拟肺脏病理和炎症级联反应,再现气溶胶微滴在肺中的传播,研究阻断病原传播的方法。该模型对于评价肺泡和支气管的通透性、粘液分泌、炎症反应等功能、开展高风险传染性肺疾病研究有重要作用。

 

 
 

体外肺微生理系统的设计与构建

 

研究人员选择了多种肺上皮细胞系,如BEAS-2B(支气管上皮细胞)、NCI-H441(2型肺泡上皮细胞)、A549和Calu-3,人单核细胞系(THP-1)和人内皮细胞系(HUVEC),并将它们接种到膜式芯片上。芯片由支气管和肺泡腔组成,每个腔室由多孔膜分割为上下两个独立空间,上层接种肺上皮或支气管上皮细胞,下层接种肺血管内皮细胞,这些细胞在芯片内形成了致密的上皮层,模拟了肺部的自然结构。芯片使用多通道流控系统进行液体灌注。

B)肺mps的典型构建时间

C)上皮和内皮形态分析

(I)肺- mps transwell样膜上的肺上皮(BEAS2b)和内皮(HUVEC)示意图。

(II)肺- mps的冷冻切片和H&E染色显示在低(上)和高(下)放大下膜两侧存在上皮和内皮(第5天)

(III)扫描电镜(SEM)图像显示内皮和上皮在膜上生长(第5天)

(IV)芯片腔内内皮和上皮的活/死染色,显示肺- mps细胞的高活力(第7天)

 

 
 

肺微生理系统芯片的应用

 

1

在肺微生理系统芯片上模拟炎症级联反应

 
 

 

巨噬细胞受免疫原性物质如PAMP和DAMP激活,进而分泌炎症因子、活化内皮细胞,造成更多单核细胞粘附并聚集于内皮层,引发炎症级联反应,而炎症级联反应通常用来描述炎症反应的放大。

为了模拟肺炎症反应,研究人员构建了一套器官芯片流路灌注系统,将肺微生理系统先后用组织定居巨噬细胞和循环单核细胞进行灌注,并用脂多糖(LPS)处理模型上腔,激活巨噬细胞,诱发炎症反应。通过连续观测芯片中流动的单核细胞,可以观察到LPS刺激后内皮细胞层有大量单核细胞粘附。炎症因子(如TNF-α、IL-6、MCP1)、跨上皮电阻(TEER)值、肺泡腔粘液分泌等指标的变化也证明了模型的炎症状态。

肺器官芯片模拟早期炎症反应

A)巨噬细胞在上皮上的播种

B)灌注过程中LPS (10 μg/ml)对内皮细胞附着的单核细胞的影响

C)在经LPS预处理的肺mps中,红色箭头表示内皮上原有的单核细胞,绿色箭头表示新的单核细胞附着

D)扫描电镜图像显示单核细胞附着在内皮与不处理LPS

E)肺- mps w/或w/o LPS组内皮上单核细胞粘附的定量比较

 

2

肺微生理系统芯片上用于液滴与空气传播疾病的研究

 
 

 

飞沫通过说话、呼吸和咳嗽传播是空气传播疾病的典型传播方式。为了构建能够模拟液滴扩散的体外模型,研究人员设计了一个全面的集成系统,整合了传播链上游的肺器官芯片、雾化器、防护口罩、下游的肺器官芯片以及泵和辅助设备。上游肺芯片肺泡室内的培养液通过雾化器产生液滴或气溶胶,经泵导入下游肺芯片。

在佩戴外科口罩与不戴口罩的情况下,追踪上游形成的色素微滴和荧光微珠扩散至下游介质的情况。结果显示,佩戴口罩能将两者的传播数量减少至5%以下,证明了防护口罩的预防效果。用这一系统也可以观察到伪病毒从病毒感染的上游肺器官向下游的传播,而口罩几乎完全阻止了伪病毒的感染。

A)模拟液滴在人体肺部之间扩散的肺器官芯片集成系统

B)肺器官芯片流路灌注系统,包括:两个控制系统

 

口罩阻断伪病毒传播。

 

 

在空气传播的感染性疾病尤其是呼吸系统疾病领域,构建一个能够全面反映肺部感染和炎症反应的仿生模型,不仅需要技术的革新,更需要对生命本质的深刻理解和对病理过程的精准把握。体外肺器官芯片模型的研究与构建,使得仿生肺模型更加完整,更能模拟真实世界的人体组织内的复杂情况,致力于填补现有科学技术的空缺。

 

文献索引:

Chen Z, Huang J, Zhang J, Xu Z, Li Q, Ouyang J, et al. A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions. Biosens Bioelectron. 2023 Jan 1;219:114772. doi: 10.1016/j.bios.2022.114772. PMID: 36272347

 

江苏艾玮得生物科技有限公司(AVATARGET)是一家专注于提供人体器官芯片产品与解决方案的创新型科技公司,致力于器官芯片、智能装备及生物试剂等产品和服务的研发生产,构建器官芯片全产业链生态体系,创新突破传统动物模型与2D细胞模型的限制,解决种属差异难题、实现体外模型3D动态培养,构建高仿真的人体微环境、提高实验数据的准确性,为肿瘤精准诊疗、疾病建模、药物筛选、药物评价、化妆品评价、再生医学研究、航天医学研究等领域用户提供精准高效的产品与解决方案。

本期文献提及的肺器官芯片与肺器官芯片流路灌注系统已在艾玮得生物实现量产转化。

 

单腔膜式芯片

 

可用于构建体外肺模型、肠道模型、肝脏模型、皮肤模型、肾脏模型与血脑屏障模型。

 

高通量膜式屏障芯片

 

可用于构建体外肺模型、肠道模型、肝脏模型、皮肤模型、肾脏模型、血脑屏障模型与免疫共培养模型。

 

器官芯片流路控制系统

 

可实现细胞空间结构排布,模拟细胞生长的流体环境和气体-液体界面环境,实现自动化培养,节省人力,减少误差和人为操作失误,并大大降低实验的复杂性。

 

欢迎咨询详情:

电话:0512-65367666

邮箱:bd@avatarget.com.cn

 

 

END

 

用“芯”呵护生命

成为全球器官芯片领航者

 

中国第一个➷

在空间站实施科学实验的器官芯片

用于申请新药IND的器官芯片

皮肤器官芯片技术标准制定者

 

扫码关注 获取更多资讯

 

2024年5月7日 16:24
首页    文献解读 | 利用仿生性肺微生理系统监测肺部病理及炎症反应